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Abstract: This article introduces a new psychophysical
method for a performance-based view of color constancy, in
which the task for the observer is to identify similar ma-
terials across illuminants despite possible appearance
changes, and to simultaneously extract the relative colors of
the illuminants.15 The article also examines generality con-
ditions for the task. Physical and neural constraints on
chromatic signals make it possible to use simple affine-
heuristic algorithms to solve the correspondence problem
for most Lambertian surfaces in random spatial arrange-
ments under different illuminants. For rough surfaces,
where the relative amounts of interface and body reflections
vary with source-object-sensor geometry, the algorithms
solve the correspondence problem across illuminants for a
constant source-object-sensor geometry, but are not suc-
cessful for rough surfaces in different spatial arrangements
under different illuminants.© 2000 John Wiley & Sons, Inc. Col
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INTRODUCTION

By selectively absorbing wavelength bands of electro-mag-
netic radiation in specialized photoreceptors and performing
neural operations on the resulting signals, the human brain
creates the percept we call color. It is obvious that this
percept is a major contributor to visual aesthetics, but does
it also serve any utilitarian purposes? A large number of
articles have shown that visual function is impaired at
isoluminance for many different tasks. A significant excep-
tion is Sachtler and Zaidi’s1 result that visual memory is
superior for chromatic qualities than for gray levels: for

short time intervals, memory thresholds for hue and satura-
tion are almost as fine as discrimination thresholds, whereas
memory for gray levels is considerably worse than discrim-
ination.1 This raises the possibility that in the functionally
important task of identifying similar objects dispersed
across space and/or time, the color attributed to the objects
may be vitally useful. Because similar objects may appear
against quite dissimilar backgrounds, it is important to note
that the memory results in Sachtler and Zaidi1 concern
absolute hue, saturation, and brightness, and not relative
qualities that could change depending on the surround. It is
also fortuitous that, in variegated scenes, the colors of
patches are not influenced by color induction when the
surround includes high spatial-frequency chromatic varia-
tions.2

The paragraph above has glossed over an important prob-
lem in the identification task. Because the spectrum of light
reflected from a material depends on the spectrum of the
illuminant, if the color of an object is solely a function of the
spectrum of light reflected from it, the same object should
appear of different colors under different illuminants. This
could possibly negate the usefulness of color as an identi-
fication aid. If, however, the visual system contains a mech-
anism to “discount the illuminant,” identical materials could
appear identical across illuminants. This, of course, is the
thinking behind the concept called “color constancy.”

Most models of color constancy invoke early adaptation
mechanisms to equate neural signals from similar materials
across different illuminants.3-8 However, experimental re-
sults show that, in variegated scenes, whereas adaptation
mechanisms do attenuate the differences between neural
signals across illuminants, in general the residual differ-
ences are greater than the limen of chromatic discrimina-
tion.9 In addition, a large number of experimental studies
have all concluded that object colors as measured by asym-
metric matching are not perfectly constant across illumi-
nants.10-14

I have previously15 proposed that it is better to ask new
types of questions: Do materials appear to be of “system-
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atically” different colors under different illuminants? In-
stead of viewing a failure of constancy as a limitation of the
visual system, should it be regarded as a design feature that
allows the observer to extract information about illuminants
as well as objects? These questions lead to a performance-
based concept of color constancy, in which it is important to
measure whether observers can recognize that objects are
being seen under different illuminants, whether they can
identify similar objects across illuminants despite changes
in appearance, and whether they can infer the relative colors
of the illuminants.

Measurements of this type can be illustrated in the pho-
tograph of the hills in Fig, 1.16 The first question is whether
an observer attributes the differences between the colors of
the trees in the yellower wedge in the foreground relative to
the trees in the rest of the foreground to differences in
illumination. The second question is whether an observer is
able to identify trees with similar foliage across the two
illuminants despite the yellower appearances in the triangu-
lar patch. The third question is whether an observer can
infer from the relative appearance of the groups of trees that
sunlight is falling on the wedge, whereas the rest of the
foreground is in shade.

Measurements related to object identification can be op-
erationalized in the psychophysical paradigm presented in
Fig. 2. In this paradigm, observers are first shown Fig. 1,
made acquainted with the concept of matching foliages
across illuminants, and then shown a few examples of Fig.
2. In Fig. 2, the chromaticities of the background ellipses
and the four circular test disks were calculated from mate-
rial reflectance spectra for a sample of 170 everyday ob-
jects17 under two different phases of natural light.18 Three
of the disks represent matching reflectance spectra, whereas
the fourth disk is the target. The color of the target disk is
set equal to the color of the matching disk under the illu-
minant on the same side, plus a delta. The delta can be
varied in either direction along any color vector, e.g., the
difference vector between the chromaticities of the match-
ing objects under the two lights, or the chromatic vector
orthogonal to the difference vector. Observers are given the
following instructions.

“The situations you will be tested on will have a number
of colored elliptical materials present under two different

lights. Notice the vertical divide in the middle of the screen
between the two lighting conditions, and the difference in
colors of ellipses on the two sides. The materials you will be
asked to match will be circular disks. Two each will be
present under each light. In every presentation three of the
disks will be of the same material, and one will be of a
different material. You will be asked to indicate which
material is different by use of the switch box. In every trial,
the same materials under the same light should look roughly
the same as each other, but may look quite different under
different lights. Different materials should look different
even under the same light. In doing this task, you should
first judge on which side the two disks look more different,
to identify the target side. Then compare the two horizontal
across-illuminant pairs to decide which of the two disks on
the target side is not the same material as on the other side.”

For each test material, the percentage of times the correct
side is chosen as a function of length along a delta vector,
measures the discrimination ability of the observer. The
percentage of time the correct object is chosen, given that
the correct side has been chosen, is a measure of the ability
of the observer to identify similar materials across illumi-
nants. In this paradigm, if an observer gets the target correct
every time the two disks on either side are discriminably
different, then identification performance is limited only by
discrimination.

There are a number of reasons why this procedure is
superior to the conventional method of measuring color
constancy by asymmetric matching. First, this method does
not make the assumption that similar materials should ap-
pear identical across illuminants. Figures 1 and 2 show that
this assumption is invalid for simultaneously present illu-
minants. Informal observations with the display in Fig. 2
showed that the assumption is still invalid when observers
view the two halves haploscopically and simultaneously,
each eye maintaining separate adaptation. Second, this
method puts an observer in the mental set of identifying
similar materials, whereas asymmetric color matching
would entirely miss the possible ability of an observer to

FIG. 2. Ellipses representing material reflectances18 under
different daylights.19 Three of the disks represent the same
material. Observer’s task is to pick the disk that represents
a different material. The 36-bit experimental display has
been quantized to 24 bits, JPEG compressed, and printed
on a Teletronix Phaser IISD.

FIG. 1. Sundance.16 Photograph scanned with an HP
Scanjet 4P and printed on a Tektronix Phaser II SD.
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identify objects despite changes in appearance. Third, on the
other hand, if an observer is terrible at identifying similar
objects across illuminants, but can perform appearance
matching, asymmetric color matches would seriously over-
estimate color constancy. In other words, just because two
patches look identical across illuminants to an observer does
not mean that they appear to belong to the same material to
that observer, as can also be gleaned from the two studies
that have required observers to match stimuli on the basis of
inferred object reflectance.19,20

The new procedure can be applied to many different
situations. In my laboratory, besides the simultaneous illu-
minants condition (Fig. 2), we are applying it to a haplo-
scopic21 version of Fig. 2 to simulate successive illumi-
nants, to lightness constancy for real crumpled objects,22

and to test color scission23 under transparent layers.24 My
aim in this article is to show the physical and neural reasons
why an observer should be able to perform well on the task
in Fig. 2 in certain situations ranging from experimental to
natural, but not in others. The data from the experiments
will appear in future publications.

CORRELATED SHIFTS IN CONE SIGNALS
ACROSS ILLUMINANTS

To test whether materials appear to be of “systematically”
different colors under different illuminants, Zaidi, Spehar,
and DeBonet9 plotted absorptions for each cone type, L, M,
and S from the 170 Vrhel17 objects under two different
daylights.18 The most noticeable aspect of all these plots
was that the points representing individual objects lay close
to straight lines, i.e., there was a strong correlation between
the quanta absorbed by each cone type from different ob-
jects across illumination changes. Comparable correlations
also exist for cone absorptions from other samples of ob-
jects and illuminants.9,25,26 These systematic changes in
cone absorptions and subsequent neural signals make it
possible to devise simple schemes for object and illuminant
color identification.15

From a different direction, the results above had been
presaged by work in computer vision examining the suffi-
ciency of diagonal transforms for color constancy.27 This
work had provided formal proofs that diagonal transforms
are sufficient, if surface reflectances can be described by
two basis functions and illuminants by three, or reflectances
by three and illuminants by two basis functions. Because
these are not proofs of necessary conditions, they do not
address the sufficiency of other possibilities. In fact, as
shown below, a basis function or spectral frequency ap-
proach to reflectances28 may not even be a suitable analysis
for the generality of correlated cone absorptions.

In analyzing this problem, I want to exploit the fact that
in each of theL, M, S plots in Zaidi et al 9, the points
representing individual objects all lie close to the line join-
ing (0, 0) and the point representing the two illuminants’
absorptions. In other words, if for a particular cone absorp-
tion spectrumP(l), and two illuminant spectra Ia(l) and
Ib(l), the ratio of cone absorptions isa/b, i.e.,

E P~l!I a~l!dl

E P~l!I b~l!dl

5
a

b
. (1)

Then all those objectsj, with spectrauj(l), fall on the
correlation line whose absorptions are also in the ratioa/b,
i.e.,

E u j~l! P~l!I a~l!dl

E u j~l! P~l!I b~l!dl

5
a

b
. (2)

The requirement in Eq. (2) can be written as the following
scalar product:

E u j~l!@P~l!I a~l!/a 2 P~l!I b~l!/b#dl 5 0. (3)

Hence, objectj falls on the correlation line, if the object
spectral reflectance, considered as a vector, is orthogonal to the
difference vector in the square-brackets, which is a linear
combination of the vectors found by wavelength-by-wave-
length multiplication of cone and illuminant spectra. The sum
of all components of the difference vector is zero, but its length
is positive. The set ofuj(l) that satisfy Eq. (3), span a hyper-
plane passing through the (1,1,1,. . .,1) vector, in the all-posi-
tive portion of a space of dimensionality one less than dim(l).

Figure 3 examines cone absorptions29 from the 170 ob-
jects17 under Direct Sunlight and Zenith Skylight.18 The
spectra of the two illuminants are shown in Fig. 3(a). Figure
3(b) shows the results of wavelength-by-wavelength multi-
plication of each of the illuminant spectra with each of the
cone spectral sensitivity curves, divided bya or b as is
appropriate from Eq. (3). This panel reveals that the major
differences between the illuminant spectra are attenuated by
multiplication with the cone absorption curves. For each
cone type, the curves in Fig. 3(c) show the difference
between the two corresponding curves in Fig. 3(b), and
represent the difference vectors in Eq. (3). When the illu-
minant spectra do not contain significant spikes, the wave-
length-by-wavelength product curves, normalized to unit
area by the division in Eq. (3), are approximately shifted
versions of each other, and the difference curves have
roughly symmetric shapes. The difference curves are close
to zero for a larger number of wavelengths than the corre-
sponding cone-absorption spectra. Consequently, for each
difference vector, many different sorts of object spectra
yield a sum of wavelength-by-wavelength products with the
positive lobe that is roughly equal to the sum with the
negative lobe, and, hence, the scalar product is close to zero.
In particular, band limiting the frequency of the object
spectrum or limiting the number of basis functions would be
irrelevant, because a spectrum consisting of any high fre-
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quency sinusoid gives a scalar product of zero. In Fig. 3(d),
the same cone class symbols are used to plot all the cone
absorptions from the 170 objects under Direct Sunlight vs.
Zenith Skylight. The absorptions from the illuminants are
used to normalize each set to a maximum of 1.0, so that the
overlapped points on the top-right corner represent the
illuminants’ cone absorptions. Notice that almost all object
absorptions fall along or close to a straight line between
(0,0) and the illuminants’ absorptions. The slope of each
point gives the ratio corresponding to the LHS of Eq. (2)
(a/b is normalized to 1.0). Significant departures of ratios
from 1.0 were generally limited to objects with very low
cone absorptions. This conclusion is expectedly different
from that reached by examining departures from zero of
projections ofuj(l) on the difference vectors,6 i.e., of the
Fourier coefficients calculated by dividing the LHS of Eq.
(3) by the squared norm of the difference vector. As shown
in the next section, ratios are more germane to algorithms
that exploit across-illuminant correlations as physical in-
variants.

Correlations similar to Fig. 3(d) are found for almost all
illuminant pairs and cone absorptions tested, but, because of
space constraints, just two more examples are shown. Fig-
ure 4 shows what was expected to be a pathological case.
Cone absorptions are compared for Skylight18 vs. a Floures-
cent lamp, which has spikes in its energy spectrum.30 How-

ever, again the scalar products of object reflectances with
the difference vectors were close to zero and cone absorp-
tions were highly correlated across the illuminants. This is
despite the fact that the spectrum of the Flourescent light
contains high-frequency components. The large positive
spikes in Fig 4(c) are balanced by the larger number of
moderate negative values, and the curves are close to zero
for many wavelengths. Consequently, almost all the scalar
products are close to zero, despite significant differences in
cone absorptions from different objects across illuminants.

Figure 5 compares cone absorptions under Skylight18

and a Tungsten Lamp,30 and illustrates possibly the lowest
correlated changes found, as shown by the scatter in the
correlation graphs [Fig. 5(d)]. The form of the correlation
is similar to the other graphs, and the correlation is
still extremely high, but objects that are distinct under
one illuminant become metamers under the other and vice
versa.30 It is worth noting that, on the energy vs. wavelength
plot, the spectrum of Tungsten light is almost orthogonal to
the spectrum of Skylight [Fig. 5(a)].

AFFINE TRANSFORMS ALONG CARDINAL
CHROMATIC DIRECTIONS

Cone signals are recoded into two chromatically opponent
signals in the eye, and these signals are transmitted to the

FIG. 3. (a) Energy spectra of illuminants: (closed symbols) T 5 Direct Sunlight and (open symbols) Z 5 Zenith Skylight.18 (b)
Wavelength-by-wavelength multiplication of cone absorption spectra.29 (L 5 squares, M 5 triangles, S 5 circles) with the
spectra of (closed symbols) illuminant T and (open symbols) illuminant Z. (c) Differences between the pairs of curves for each
cone type in Fig. 3(b). These difference spectra (L 5 squares, M 5 triangles, S 5 circles) correspond to the difference vectors
in Eq. (3). (d) Excitation of L, M, S cones (L 5 squares, M 5 triangles, S 5 circles) from each of 170 objects17 under illuminants
T and Z. The points at (1.0, 1.0) represent cone absorptions from the two illuminants.

FIG. 4. Similar to Fig. 3 for cone absorptions under (open symbols) illuminant Z and (closed symbols) Flourescent Lamp F.27
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cortex.31 These signals are represented on the cardinalrg 5
L/(L 1 M) andyv5 S/(L 1 M) axes of the MacLeod–Boynton
equiluminant color space.32,33Zaidiet al.9 found that, to a good
approximation for all pairs of changes between phases of
natural daylight, object chromaticities were shifted additively
along therg axis and multiplicatively alongyv.To exploit the
mathematical invariants of affine transforms, these changes
can be represented in the form:

F rgja

yv ja
G 5 F 1 0

0 sab
GF rgjb

yv jb
G 1 F tab

0 G (4)

wherej is the index for objects in the sample; (rgja, yvja) and
(rgjb, yvjb) are theL/(L 1 M) andS/(L 1 M) chromaticities
of the object under illuminants Ia and Ib, respectively; and
(tab, sab) describe the shift in the chromaticities (rga, yva) of
Ia relative to the chromaticities (rgb, yvb) of Ib, i.e.,

F rga

yva
G 5 F 1 0

0 sab
GF rgb

yvb
G 1 F tab

0 G . (5)

Equation (4) follows from two empirically established gen-
eralizations. First, given the high correlations between cone
absorptions from objects across illuminants, as a good ap-
proximation, we can write for allj:

L ja 5 aL jb; M ja 5 bM jb; Sja 5 gSjb. (6)

Second, Zaidi34 showed that for Vrhel objects under the
same illuminant, the correlation between L cone absorption
and M cone absorption is around 0.99, but the correlations
between L and S and M and S are low. Therefore, as a good
approximation, we can also write:

L ja 5 nM ja; L jb 5 vM jb. (7)

Given these conditions,

tab 5
Lja

Lja 1 Mja
2

Ljb

Ljb 1 Mjb
5

v~a 2 b!

~av 1 b!~v 1 1!
. (8)

The difference ( yvja 2 yvjb) does not reduce to a constant
from Eqs. (6) and (7), but

sab 5
Sja

Lja 1 Mja
Y Sjb

Ljb 1 Mjb
5

g~v 1 1!

~av 1 b!
. (9)

The chromaticities for any objectj follow the affine trans-

form in Eq. (4) to the extent that Eqs. (6) and (7) hold for
that particular object.

The affine transform in Eq. (4) was used to devise heu-
ristic-based algorithms that solve the correspondence prob-
lem for materials across illuminants and simultaneously
infer the relative chromaticities of the illuminants.15 An
example of one class of situations in which the algorithm
was successful, is depicted in Fig, 6. The central panel
shows the chromaticities of 17 randomly chosen surfaces
under Equal Energy light. Chromaticities of a random sub-
set of 6 of these under Zenith Skylight are shown in the left
panel as crosses. The scenario is that the algorithm has
access only to the two sets of chromaticities, as if a subset
of the objects were present under a different light and in
possibly a different spatial arrangement. The affine trans-
formation assumption implies that the shape formed by the
crosses should be similar to the shape formed by the circles
belonging to the same materials, subject to a translation
along the horizontal axis, and an expansion or compression
along the vertical axis. The algorithm tries to find the best
template match between discrete points for these transfor-
mations. The panel on the right shows the transformed
crosses along with the correct target circles, demonstrating
that the correspondence problem is solved correctly. The
small mismatches do not matter, because the algorithm
identifies discrete pairs of corresponding objects. In addi-
tion, the transformation automatically provides the illumi-
nant chromaticity shift. The success of the algorithm vali-
dates the affine transformation assumption.

AFFINE TRANSFORMS FOR ROUGH SURFACES

The situation above assumes that each object is well repre-
sented by a single pair of(rg,yv) chromaticities. This as-
sumption is valid for Lambertian surfaces of unvarying
spectral reflectance lit by a uniform illuminant. However,
most objects in the world have more complex surfaces.
Observations of real-world textured objects reveal that there
are point-by-point changes in appearance, the same surface
appears of a different color where it is smooth than where it
is rough, and the variations of roughness give a clue as to
the specularity of the substance and its metallic/nonmetallic
nature. In fact, source-object-sensor geometry at each point

FIG. 5. Similar to Fig. 3 for cone absorptions under (open symbols) illuminant Z and (closed symbols) Tungsten Lamp W.27
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of the surface determines the absolute and relative magni-
tudes of the interface reflection (which has the same spec-
trum as the illuminant), and the body reflection (which is a
wavelength-by-wavelength multiplication of the object and
illuminant spectra). When surfaces have a rough micro-
structure, both interface and body reflections are diffuse.
The intensity of interface reflection has a peak at an angle
forward of the specular.35 The intensity of body reflection
has a peak in the direction of the source and is more diffuse
for rougher surfaces.36 For plastics, and other inhomoge-

neous dielectric materials, even smooth surfaces are non-
Lambertian for oblique illumination.37 The colors and
shapes of highlights also depend on the surface roughness.36

To test the algorithm’s performance for more realistic
rough surfaces, the first case tackled is where the source-
object-sensor geometry is constant across two illuminants,
but where rough surfaces are present in different parts of the
scene in arbitrary facets. In that case, for both illuminants,
the total reflection from each surface facet can be expressed
as an invariant weighted sum of the body and the interface

FIG. 7. Same as for Fig. 6, but for rough surfaces. Diamonds in the left and center panels represent body reflections
chromaticites, “1” and “o” in these panels are chromaticity shifts caused by mixture with the interface reflection.

FIG. 6. Matching of materials by the affine-heuristic algorithm despite illuminant-caused chromaticity shifts. Left: Chroma-
ticities of 6 Lambertian objects17 under equal-energy light. Center: Chromaticities of 17 Lambertian objects17 under skylight.
The 6 objects in the left panel are included in the 17. Right: Crosses represent results of applying to the crosses in the left
panel the best affine transformation calculated by the algorithm. To show the accuracy of the matching procedure, circles for
the same objects are replotted from the center panel.
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reflection, i.e., for each illuminant Ii, the chromaticity (RGji,
YVji) of the total reflection is an invariant weighted sum of
the chromaticity of the body reflection (rgji , yvji) and the
illuminant chromaticity (rgi, yvi). In that case, the chroma-
ticities of the total reflections obey the same affine trans-
formation as the illuminant and body reflection chromatici-
ties. It is reasonable to make the assumption36 for each facet
of a rough object that:

Total Reflection5 k ~Body Reflection!

1 ~1 2 k! ~Interface Reflection!, (10)

i.e., for each illuminant Ii:

F RGji

YVji
G 5 kF rgji

yv ji
G 1 ~1 2 k!F rgi

yv i
G . (11)

Then, substituting Eqs. (4) and (5) into Eq. (11) and gath-
ering terms:

F RGja

YVja
G 5 F 1 0

0 sab
GF RGjb

YVjb
G 1 F tab

0 G . (12)

Figure 7 shows a simulation of the algorithm for the same
objects as in Fig. 6. In this simulation, each of these objects
is assumed to consist of a homogeneously rough material,
and the objects are present in random facets, but in the same
facets under the two illuminants. This would be the case, if
the spectrum of the illuminant changed over a fixed scene.
Hence, the value ofk in Eq. (11) is less than 1.0 for all
objects, and is chosen at random for each object but iden-
tical under both illuminants. The small diamonds in the left
and center panels represent the body chromaticities under
Skylight and Equal-Energy lights, and are identical to the
circles and pluses in Fig. 6. The pluses and circles represent
the total reflection chromaticities and are shifted towards the

illuminant chromaticities. The right panel shows that, in this
case, the algorithm solves the correspondence problem as
successfully as in Fig. 6.

A more difficult case is depicted in Fig. 8, where objects
are present in different spatial arrangements under the two
illuminants, i.e., the source-object-sensor geometry repre-
sented by the value ofk for each object is randomized across
the illuminants. In this case, Eq. (12) is not valid; therefore,
the algorithm should not be expected to solve the correspon-
dence problem. The right panel shows mismatches between
the transformed pluses and the target circles.

There is an important difference between Figs. 7 and 8. In
Fig. 7, mixtures of the interface reflection with the body
reflection lead to distortions in the shapes formed by the
chromaticities in the left and center panels, but the distor-
tions are similar, so the algorithm is successful. In Fig. 8,
the distortion in the left panel can be very dissimilar from
the distortion in the center panel, and the algorithm is not
designed to correct for this change. The results of a large

FIG. 9. Center panel: A cylindrical surface made out of a
rug.38,39 Left and right panels: Strips isolated from the cyl-
inder.

FIG. 8. Same as Fig. 7, except that each of the objects is present under the first light in a different facet than under the
second.
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number of simulations for the three different situations
represented by Figs. 6, 7, and 8 have shown that the algo-
rithm is very robust in the first two situations: the initial
object chosen by the algorithm to be matched does not
influence the final solution appreciably. On the other hand,
the algorithm is very susceptible to the starting point for the
situation in Fig. 8.

The task in Fig. 8, however, is one that the human visual
system also does not seem to be able to perform. In the
center of Fig. 9 is a cylinder from the Columbia–Utrecht
database,38,39 constructed from photographs of a rug taken
in different facets. On the two sides are narrow strips
extracted from this cylinder. Even though the two strips are
actually the same material as seen in two different facets
under the same illuminant, they do not appear to be the same
color or even the same material. Figure 10 demonstrates that
this judgment is also difficult for achromatic objects. This
cylinder from the Columbia–Utrecht database was con-
structed from facets of a piece of plaster. In the absence of
stereo information, the two extracted narrow strips on the
sides do not seem to have the same roughness or albedo.

SUMMARY

In this article, I have espoused a performance-based view of
color constancy, in which the task for the observer is to
identify similar materials across illuminants despite possible
appearance changes, and to simultaneously extract the rel-
ative colors of the illuminants. I have shown the physical
and neural constraints on chromatic signals that make it
possible to use simple heuristic-based algorithms to accom-
plish these tasks in certain situations.

An affine-heuristic algorithm can solve the correspon-
dence problem for most Lambertian surfaces in random
spatial arrangements under different illuminants. For rough
surfaces, where the relative amounts of interface and body
reflections vary with source-object-sensor geometry, the
algorithms solve the correspondence problem across illumi-
nants for a constant source-object-sensor geometry. The
algorithms are not successful for rough surfaces in random
spatial arrangements under different illuminants. However,
in real-world situations, three-dimensional objects some-
times share enough visible facets across scenes and illumi-
nants, so that color identification algorithms could be useful

when combined with recognition of other object proper-
ties.40

ACKNOWLEDGMENTS

I thank Byung–Geun Khang for his collaboration on the
psychophysical task, Roshni Desai for manuscript publica-
tion, and Andrea Li, Fuzz Griffiths, Karl Gegenfurtner,
Rocco Robilotto, and Herminder Boparai for comments.
This work was supported by NEI grant EY07556.

1. Sachtler W, Zaidi Q. Chromatic and luminance signals in visual
memory. J Opt Soc Am A 1992;9:877–894.

2. Zaidi Q, Yoshimi B, Flanigan N, Canova A. Lateral interactions within
color mechanisms in simultaneous induced contrast. Vision Res 1992;
32:1695–1707.

3. Ives HE. The relation between the color of the illuminant and the color
of the illuminated object. Trans Illum Eng Soc 1912;7:62–72. Re-
printed in: Color Res Appl 1995;20:70–75.

4. Land E, McCann JJ. Lightness and retinex theory. J Opt Soc Am
1971;61:1–11.

5. Land E. Recent advances in retinex theory and some implications for
cortical computations: color vision and the natural image. Proc Natl
Acad Sci (USA) 1983;80:5163–5169.

6. West G, Brill MH. Necessary and sufficient conditions for Von Kries
chromatic adaptation to give color constancy. J Math Biol 1982;15:
249–258.

7. Dannemiller JL. Computational approaches to color constancy: adap-
tive and ontogenetic considerations. Psych Rev 1989;96:255–266.

8. Brill MH. Image segmentation by object color: a unifying framework
and connection to color constancy. J Opt Soc Am A 1990;7:2041–
2049.

9. Zaidi Q, Spehar B, DeBonet JS. Color constancy in variegated scenes:
the role of low-level mechanisms in discounting illumination changes.
J Opt Soc Am A 1997;14:2608–2621.

10. Valberg A, Lange–Malecki B. ‘Colour constancy’ in Mondrian pat-
terns: a partial cancellation of physical chromaticity shifts by simul-
taneous contrast. Vision Res 1990;30:371–380.

11. Walraven J, Benzshawel TL, Rogowitz BE, Lucassen MP. Testing the
contrast explanation of color constancy. In: Valberg A, Lee B, editors,
From pigments to perception. New York: Plenum; 1991. p 369–378.

12. Helson H, Judd D, Warren M. Object-color changes from daylight to
incandescent filament illumination. Illum Eng 1952;47:221–233.

13. McCann J, McKee S, Taylor T. Quantitative studies in retinex theory.
Vision Res 1976;16:445–458.

14. Brainard DH. Color constancy in the nearly natural image. 2. Achro-
matic loci. J Opt Soc Am A 1998;15:307–325.

15. Zaidi Q. Identification of illuminant and object colors: heuristic-based
algorithms. J Opt Soc Am A 1998;15:1767–1776.

16. Ketchum RG. The legacy of wilderness: The photographs of Robert
Glenn Ketchum. New York: Aperture Foundation; 1993.

17. Vrhel M, Gershon R, Iwan LS. Measurement and analysis of object
reflectance spectra. Color Res Appl 1994;19:4–9.

18. Taylor AH, Kerr GP. The distribution of energy in the visible spectrum
of daylight. J Opt Soc Am 1941;31:3.

19. Marzynski G. Z Ps 1921;87:45–72. (Described in: Woodworth RS.
Experimental Psychology. Henry Holt; 1939).

20. Arend LE, Reeves R. Simultaneous color constancy. J Opt Soc Am A
1986;3:1743–1751.

21. Bramwell DI, Hurlbert AC. Measurements of colour constancy by
using a forced-choice matching technique. Perception 1996;25:229–
241.

22. Robilotto R, Zaidi Q. Performance based lightness constancy: crum-
pled 3D objects. Investig Ophthal Vis Sci 2000;41:S227.

23. D’Zmura M, Colantoni P, Knoblauch K, Laget B. Color transparency.
Perception 1997:26:471–492.

FIG. 10. Similar to Fig. 9 for a plaster cylinder.

Supplement Volume 26, 2001 S199



24. Khang B, Zaidi Q. Tests of color scission by identification of trans-
parent overlays. Investig Ophthal Vis Sci 2000;41:S239.

25. Dannemiller JL. Rank ordering of photoreceptor catches from objects
are nearly illumination invariant. Vision Res 1993;33:131–137.

26. Foster DH, Nascimento SMC. Relational colour constancy from in
variant cone-excitation ratios. Proc R Soc London Ser B 1994;250:
116–121.

27. Finlayson GD, Drew MS, Funt BV. Color constancy: generalized
diagonal transforms suffice. J Opt Soc Am A 1994;11:3011–3019.

28. Maloney L. Evaluation of linear models of surface spectral reflectance
with small numbers of parameters. J Opt Soc Am A 1986;3:1673–1683.

29. Smith VC, Pokorny J. Spectral sensitivity of the foveal cone photopig-
ments between 400 and 700 nm. Vision Res 1975;15:161–171.

30. Wyszecki G, Stiles WS. Color science. New York: Wiley; 1982.
31. Derrington AM, Krauskopf J, Lennie P. Chromatic mechanisms in

lateral geniculate nucleus of macaque. J Phys 1984;357:241–265.
32. MacLeod DIA, Boynton RM. Chromaticity diagram showing cone

excitation by stimuli of equal luminance. J Opt Soc Am 1979;69:
1183–1186.

33. Krauskopf J, Williams DR, Heeley D. Cardinal directions of color
space. Vision Res 1982;22:1123–1131.

34. Zaidi Q. Decorrelation of L and M cone signals. J Opt Soc Am A
1997;14:3430–3431.

35. Torrance KE, Sparrow EM. Theory for off-specular reflection from
roughened surfaces. J Opt Soc Am 1967;57:1105–1114.

36. Oren M, Nayar SK. Generalizations of the Lambertian model and
implications for machine vision. Int J Comp Vis 1995;14:227–251.

37. Wolff LB. A diffuse reflectance model for smooth dielectrics. J Opt
Soc Am A 1994;11:2956–2968.

38. Dana KJ, Ginneken B, Nayar SK, Koenderink JJ. Reflectance and
texture of real-world surfaces. Columbia University Technical Report
CUCS-046-96.

39. Dana KJ, Ginneken B, Nayar SK, Koenderink JJ. Reflectance and
texture of real-world surfaces. Columbia University Technical Report
CUCS-048-96.

40. Gegenfurtner KR. Sensory and cognitive contributions of color to
the recognition of natural scenes. Investig Ophthal Vis Sci 1998;
39:S156.

S200 COLOR research and application


